

Abstract— Digital forensics is a relatively new field in

Computer Science and it focuses on the acquisition, preservation

and analysis of digital evidence, in a way that that these evidences

are suitable for presentation in a court of law. Forensic

investigators follow a standard set of procedures. One major and

difficult problem is the correct identification of file types.

Criminals often hide evidence in a digital device, by changing the

file type. It is very common, a child predator to try to hide image

files with immoral content in order to fool police authorities. In

this paper we examine a methodology for file type identification,

which uses computational intelligence techniques for feature

selection and classification. This methodology was applied to the

three most common image file types (jpg, png and gif). In order

to ascertain the method’s accuracy, different machine learning

classifiers were utilized. A three stage process involving feature

extraction (Byte Frequency Distribution), feature selection

(genetic algorithm) and classification (decision tree, support

vector machine, neural network, logistic regression and k-nearest

neighbor) was examined. Experiments were conducted having

files altered in a digital forensics perspective and the results are

presented. The examined methodology showed -in most cases-

very high and exceptional accuracy in file type identification.

Index Terms— artificial neural network, computer crime,

digital forensics, file type detection, genetic algorithms, machine

learning algorithms

I. INTRODUCTION

IGITAL forensics concerns the recovery and investigation

of possible evidence found in digital devices. A digital

forensics examination typically consists of four major phases;

data collection, examination, analysis and report. Data

examination is very critical because in this phase the

evaluation of the collected data will be made. Therefore

misjudgment of possible evidence may lead a court of law to

wrong conclusions about criminal’s activities. For example, it

is very common, a child predator to try to hide image files

This work was submitted for review on 8/8/2016.

Konstantinos Karampidis is with Department of Information &

Communication Systems Engineering, University of the Aegean, 83200
Karlovasi Samos, Greece (e-mail: karampidis@ outlook.com).

Ergina Kavallieratou is with Department of Information & Communication

Systems Engineering, University of the Aegean, 83200 Karlovasi Samos,
Greece (e-mail: kavallieratou@aegean.gr).

Giorgos Papadourakis is with Department of Informatics Engineering,

Technological Educational Institute of Heraklion, 71500 Heraklion Crete,
Greece (e-mail: papadour@cs.teicrete.gr).

with immoral content in order to fool police authorities.

Typically they change file’s extension, file’s signature (magic

bytes) or even both. On the other hand, forensic examiners use

specialized forensic software to identify those forged files but

in some cases even the best forensic software cannot identify

correctly a file type. File type detection methods can be

classified into three categories: extension, magic and content

based methods. A lot of scientific methods have been

proposed [1] but although some of them show more

advantages than weaknesses, none is comprehensive or

reliable enough to fulfil all the requirements. Due to the fact

that extension-based methods are easy enough to be spoofed –

just by a simple renaming of the file- and since the magic

bytes in files cannot precisely determine true file type

(because there is no predefined standard for the developers),

the most significant methods are those who focus on the

content of files. To achieve this, the content of each file is

examined thoroughly and statistical modeling techniques are

utilized to detect the correct file type. These methods are the

most promising ones and proved to show the best results. M.

McDaniel et al. [2], [3] suggested three algorithms for content-

based file type detection. The correctness varied from 23 % to

96 % depending upon the algorithm used. W.J. Li et al. [4]

worked on these algorithms and proposed to compute a set of

centroid models and use clustering in order to find a minimal

set of centroids with good performance while the use of more

pattern data was considered necessary. Their methodology had

a result of 82 % to 89.5% accuracy (one or multi centroid

respectively) and 93.8 % accuracy when they examined a

larger number of files in the dataset. Supervised learning

techniques were used by J. Dunham et al.[5]. More

specifically they used neural networks for classification and

reached 91.3 % accuracy. M.C. Amirani et al. [6] used the

Principal Component Analysis and unsupervised neural

networks for the automatic feature extraction. They also used

a neural network for classification, succeeding an accuracy of

98.33 % which was the best so far. D. Cao et al. [7] used

Gram Frequency Distribution and vector space model with

results of 90.34 % accuracy. I. Ahmed et al. [8] proposed two

very interesting methods. Primary they used the cosine

distance as a similarity metric when comparing the file

content. Subsequent they decomposed the identification

procedure into two steps. They used 2000 files of 10 file types

as a dataset and achieved an accuracy of 90.19 %. I. Ahmed et

Comparison of Classification Algorithms for

File Type Detection

A Digital Forensics Perspective

Konstantinos Karampidis, Ergina Kavallieratou, and Giorgos Papadourakis

D

15 POLIBITS, vol. 56, 2017, pp. 15–20https://doi.org/10.17562/PB-56-2

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

al. [9] also proposed two new techniques to reduce the

classification time. The first method involved a feature

selection technique and the K-nearest neighbor (KNN) as a

classifier. The second method was the content sampling

technique, which used a small portion of a file to obtain its

byte-frequency distribution. M.C. Amirani et al.[10] then

proposed an improved version of their first method by using a

Support Vector Machine classifier and finally succeeded in

raising the accuracy of the method to 99.16 %. J. D. Evensen

et al. [11] used an n-gram analysis with naïve Bayes classifier

to a large dataset of 60000 files (6 file types) with very good

results achieving 99.51 % topmost. Finally, we proposed a

new method [12] which included a three stage process

involving feature extraction (Byte Frequency Distribution),

feature selection (genetic algorithm) and classification (neural

network). This method was tested to a large dataset in a digital

forensics perspective and it showed extremely high accuracy

(99.61%). All above papers refer to identification of whole

files. Although our method, achieved extremely high

accuracy even in a digital forensics perspective, we considered

wise to explore whether the utilization of another

classification method achieves better results. More

specifically, we will reproduce the first two stages of the

method and examine five different classification algorithms -

decision tree, support vector machine, neural network, logistic

regression and k-nearest neighbor- on the same dataset.

Eventually an evaluation will be made about which classifier

shows the best results for a forensic file type detection. A

similar work [13] has been published but the authors examined

fragments of files. The number of files they examined were

too small (150 files of each type at topmost) in order to

estimate accurately the correct file type and they used a

different method for feature extraction (PCA). Finally the file

types chosen for this study included PDF documents, JPG

images, ASCII text files (TXT), Microsoft Word documents

(DOC), HTML pages and executable files (EXE) which is far

different from our point of interest. The rest of the paper is

organized as follows: In Section 2 the proposed methodology

is described, in Section 3 the different classifiers and the

experimental parameters which utilized are briefly described

and in Section 4 the experimental results are presented

followed by conclusions.

II. METHODOLOGY OF THE EXAMINED METHOD

Due to their importance to Digital Forensics, the

identification of the most common image file types

(jpg,png,gif) will be examined. The scientific method we

examine in this paper uses computational intelligence

techniques in order to identify the file type and to reveal the

correct type if the file is altered. It involves feature extraction,

feature selection and classification. Primarily all files from the

dataset are loaded and the features are extracted. Byte

Frequency Distribution (BFD) is used as feature extraction

method. The number of incidences of each byte value in an

input file is counted and an array with elements from 0 to 255

is created. Then each element of the array is normalized by

dividing with the maximum occurrence. The final result is a

file containing 256 features for each instance. Subsequently,

feature selection is performed using a genetic algorithm.

Genetic algorithms can provide candidate solutions. Each

candidate solution (chromosome) is represented by a binary

feature vector of dimension 256, where zero (0) indicates that

the respective feature is not selected, and one (1) indicates that

the feature is selected. The score of each candidate solution is

evaluated by a fitness function. As a fitness function the

Correlation based Feature Selection (CFS) [14] algorithm is

utilized. This algorithm evaluates the candidate solutions from

the genetic algorithm and choses those which include features

highly associated to the file type category and low correlated

with each other, by calculating each candidate’s solution

merit. Let S be a candidate solution consisting of k features.

The merit of each candidate solution is calculated as shown in

(1).

MeritSk=
𝑘𝑟𝑐𝑓̅̅ ̅̅ ̅

√𝑘+𝑘(𝑘−1)𝑟𝑓𝑓̅̅ ̅̅ ̅
 (1)

,where:

 𝑟𝑐𝑓̅̅ ̅̅ is the average value of all feature-classification

correlations and

 𝑟𝑓𝑓̅̅ ̅̅ is the average value of all feature-feature correlations.

CFS stops when five consecutive fully expanded candidate

solutions show no improvement. The utilization of the genetic

algorithm as a search method and CFS as an evaluator leads to

the reduction of the 256 extracted features to 44. Finally a one

hidden layer neural network using the backpropagation

algorithm is used for classification. Caltech 101 [15] from

Caltech University is utilized as dataset. This dataset contains

9144 images in jpeg format from 101 categories. From these

jpeg images 5519 of them are utilized. One third of these 5519

files are converted to png format and a similar number to gif

format. The dataset is divided into a training set (70%) and a

test set (30%). Furthermore, 1840 pdf files were added. The

created dataset is uniformly distributed and its exact numbers

are indicated in Table I.
TABLE I

 THE DATASET

Dataset

Total files Training Testing

jpeg 1840 1288 552

png 1840 1288 552

gif 1839 1287 552

pdf 1840 1288 552

Total 7359 5151 2208

In this paper the first two phases of the experiment will be

reproduced (feature extraction and feature selection) and the

performance of five different machine learning algorithms -

including the neural network originally proposed in [12]- will

be evaluated.

16POLIBITS, vol. 56, 2017, pp. 15–20 https://doi.org/10.17562/PB-56-2

Konstantinos Karampidis, Ergina Kavallieratou, Giorgos Papadourakis

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

III. LEARNING ALGORITHMS AND PARAMETERS SETUP
Waikato Environment for Knowledge Analysis (Weka) [16],

an open source machine learning software developed at the

University of Waikato, New Zealand was used for all the

conducted experiments. An attribute selected classifier was

used in Weka. Furthermore, a genetic algorithm was chosen as

a search method. The population size was 256, the number of

generations 100, crossover was set to 0.8 and mutation

probability to 0.033. CFS was the fitness function, roulette

wheel selection was used to probabilistically select individuals

and the single-point crossover operator was selected. The use

of CFS as a filter selection evaluator and the genetic algorithm

as a search strategy resulted to the selection of 44 features i.e.

82.81 % reduction. The classifiers examined in this paper

were: decision trees, support vector machines, Neural

Network, Logistic Regression, k-Nearest Neighbor. In order to

estimate the accuracy of each classification model during the

training phase, a stratified 10 fold cross validation was

performed.

A. Decision Trees

The algorithm selected for decision tree building was C4.5,

developed by R. Quinlan [17]. More specifically an open

source implementation of the C4.5 algorithm in Weka known

as J48 was utilized. The algorithm has a top down approach. It

is a recursive divide and conquer algorithm. The training data

are classified instances, while each one of these instances

consists of features along with the class the specific instance

belongs. One feature is selected as root node and the algorithm

creates a branch for each possible feature value. That splits the

instances into subsets, one for each branch that extends from

the root node. The splitting criterion the algorithm uses is the

normalized information gain. The feature with the highest

normalized information gain is chosen to make the decision.

Then the procedure is repeated recursively for each branch,

selecting a feature at each node and only instances that reach

that node are used to make the selection. This machine

learning algorithm can be fine-tuned by setting up a lot of

parameters. The parameters which were optimized in the

experiment are shown on Table II.

TABLE II

PARAMETERS OF THE J48 LEARNING ALGORITHM

Parameter Default

 Value

Chosen

Value

Minimum number of instances

per leaf

2 1

Use of unpruned trees False False

Confidence factor used for

pruning

0.25 0.25

Consider subtree raising

operation when pruning

True True

Use of binary splits on nominal

attributes

False False

B. Support Vector Machines

A Support Vector Machine (SVM) is a machine learning

method based on statistic learning theory. SVM try to find the

maximum margin hyperplane that separates two classes. An

adaptation of the LIBSVM [18] implementation was used in

the following. Four types of kernel function linear,

polynomial, radial basis function, and sigmoid are provided by

LIBSVM. A Support Vector Classification (C-SVC) was used

with Radial Basis Function (RBF) kernel. After various

conducted experiments, it was found that the optimal value of

gamma (G) parameter of the RBF kernel was 2.

C. Artificial Neural Network

A multilayer neural network using the backpropagation

algorithm was implemented as a classifier in Weka. The

neural network consisted of one hidden layer with 3 nodes.

The number of inputs was the 44 selected features and the

number of outputs the four possible categories namely jpeg,

png, gif and pdf. The learning rate was set to 0.3 and in order

to avoid local minimum and to accelerate the learning process,

the momentum parameter was set to 0.2. The training time

(epochs) after experimentation was set to 500.

D. Logistic Regression

The idea of Logistic Regression (LR) is to make linear

regression produce probabilities. Instead of predicting classes,

it predicts class probabilities. These class probabilities are

estimated directly using the logit transform. In Weka the

Logistic algorithm was utilized with the default parameter

setup as shown on Table III.

TABLE III

THE DEFAULT PARAMETERS OF THE ALGORITHM

Parameters in Weka

Maximum Iterations (MaxIts) -1

Ridge Value (ridge) 1.0E-8

E. k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) is a simple algorithm used

for classification. The purpose of the k-NN algorithm is to use

a training set - in which each one of instances is already

classified- , in order to predict the classification of a new

unknown instance in a test set. It is a lazy algorithm as it does

not use the instances in training set to do any generalization.

When a new instance is presented from a given test set, the

algorithm searches the entire training set for the k most similar

instances (the neighbors). To determine which of the k

instances in the training set are most similar to a new input, a

distance measure is used. The distance measure utilized in this

implementation was the Euclidean distance. The output then

can be calculated as the class with the highest frequency from

the k-most similar instances. Each instance votes for their

class and the class with the most votes is taken as the

prediction. In order to find the optimum number of k, different

implementations were done in Weka and it was found that the

optimal value of k is 10.

17 POLIBITS, vol. 56, 2017, pp. 15–20https://doi.org/10.17562/PB-56-2

Comparison of Classification Algorithms for File Type Detection A Digital Forensics Perspective

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

IV. EXPERIMENTAL RESULTS

Primarily, in order to evaluate the performance of every

classifier used, 2208 unseen instances of unaltered files

(equally distributed to the four categories as already shown on

Table I) were presented to each classification model. The

detailed accuracy by class, along with other performance

metrics such as true positive rate (TP Rate), false positive rate

(FP Rate), precision and recall for every one of the five

classifiers are presented on tables IV-XII. Moreover, the

resulted confusion matrix for each one of the learning

algorithms examined, is presented.

TABLE IV

DETAILED ACCURACY BY CLASS USING DECISION TREE (J48)

Class TP Rate FP Rate Precision Recall

jpg 0.969 0.040 0.889 0.969

pdf 0.862 0.013 0.956 0.862

png 0.960 0.015 0.955 0.960

gif 0.991 0.004 0.989 0.991

TABLE V

CONFUSION MATRIX – DECISION TREE (J48)

Actual file type
Classified as

jpg pdf png gif

jpg 535 9 4 4

pdf 57 476 17 2

png 10 12 530 0

gif 0 1 4 547

TABLE VI

DETAILED ACCURACY BY CLASS USING SVM

Class TP

 Rate

 FP

 Rate

Precision Recall

jpg 1 0.014 0.960 1

pdf 0.953 0.001 0.996 0.953

png 0.986 0.009 0.973 0.986

gif 0.989 0 1 0.989

TABLE VII

CONFUSION MATRIX – SVM

Actual file type
Classified as

jpg pdf png gif

jpg 552 0 0 0

pdf 17 526 9 0

png 6 2 544 0

gif 0 0 6 546

TABLE VIII

DETAILED ACCURACY BY CLASS USING NEURAL NETWORK

Class TP

 Rate

FP

 Rate

Precision Recall

jpg 1 0.002 0.995 1

pdf 0.987 0.002 0.993 0.987

png 0.993 0.005 0.984 0.993

gif 0.986 0.002 0.995 0.986

TABLE IX

CONFUSION MATRIX – NEURAL NETWORK

Actual file type
Classified as

jpg pdf png gif

jpg 552 0 0 0

pdf 3 545 2 2

png 0 3 548 1

gif 0 1 7 544

TABLE X

DETAILED ACCURACY BY CLASS USING LR

Class TP

 Rate

FP

 Rate

Precision Recall

jpg 0.996 0.011 0.968 0.996

pdf 0.975 0.008 0.975 0.975

png 0.955 0.005 0.985 0.955

gif 0.987 0.005 0.986 0.987

TABLE XI

CONFUSION MATRIX – LOGISTIC REGRESSION

Actual file type
Classified as

jpg pdf png gif

jpg 550 1 0 1

pdf 9 538 3 2

png 8 12 527 5

gif 1 1 5 545

TABLE XII

DETAILED ACCURACY BY CLASS USING k-NN

Class TP

 Rate

FP

 Rate

Precision Recall

jpg 0.993 0.018 0.950 0.993

pdf 0.942 0.007 0.979 0.942

png 0.975 0.006 0.982 0.975

gif 0.996 0.001 0.996 0.996

TABLE XIII

CONFUSION MATRIX – k-NN

Actual file type
Classified as

jpg pdf png gif

jpg 548 4 0 0

pdf 23 520 8 1

png 6 7 538 1

gif 0 0 2 550

A. The Digital Forensics Perspective

In digital forensics it is very common someone to try to

alter evidence, like by renaming image files to documents, in

order to fool authorities. In order to examine if the proposed

method identifies the correct file type when the file was

altered, one third of the testing pdf files (168) was replaced

with unseen image files whose extension and signature (magic

bytes) was changed to pdf. The first test set contained 168

altered pdf files. These 168 altered files were actually jpeg

images whose extension and signature was changed to pdf.

Likewise, the 168 pdf files of the second dataset were actually

png altered images and in the third data set the 168 pdf files

18POLIBITS, vol. 56, 2017, pp. 15–20 https://doi.org/10.17562/PB-56-2

Konstantinos Karampidis, Ergina Kavallieratou, Giorgos Papadourakis

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

were altered gif images. Therefore, three new test sets were

created. Subsequently, unseen instances from all categories

were presented to the models for evaluation. The resulted

confusion matrix for every learning algorithm for each one of

the three testing sets is shown on tables XIV-XVIII.

TABLE XIV

CONFUSION MATRIX – DECISION TREE (J48)

Forged file’s

Actual Type

Classified as

jpg pdf png gif

168 jpg 167 1 0 0

168 png 8 3 157 0

168 gif 0 0 0 168

TABLE XV

CONFUSION MATRIX – SVM

Forged file’s

Actual Type

Classified as

jpg pdf png gif

168 jpg 168 0 0 0

168 png 3 8 155 2

168 gif 0 1 0 167

TABLE XVI

CONFUSION MATRIX – NEURAL NETWORK (NN)

Forged file’s

Actual Type

Classified as

jpg pdf png gif

168 jpg 168 0 0 0

168 png 0 2 166 0

168 gif 0 0 0 168

TABLE XVII

CONFUSION MATRIX – LOGISTIC REGRESSION (LR)

Forged file’s

Actual Type

Classified as

jpg pdf png gif

168 jpg 168 0 0 0

168 png 7 6 150 5

168 gif 0 0 0 168

TABLE XVIII

CONFUSION MATRIX – K-NEAREST NEIGHBOR (KNN)

Forged file’s

Actual Type

Classified as

jpg pdf png gif

168 jpg 167 1 0 0

168 png 8 3 157 0

168 gif 0 0 0 168

The combined confusion matrix for every classifier utilized

in the experiments is shown on table XIX. The greyed color

cells indicate the maximum accuracy achieved.

TABLE XIX

COMBINED CONFUSION MATRIX FOR THE FIVE CLASSIFIERS

Forged

File

types

Prediction Accuracy (%)

J48 SVM NN LR kNN

jpg 99.40 100.00 100.00 100.00 99.40

png 93.45 92.26 98.81 89.28 93.45

gif 100.00 99.40 100.00 100.00 100.00

It is obvious from table XIX that even a very simple neural

network achieved excellent results and identified extremely

well almost all the forged files. The other classifiers achieved

very high accuracy as well but we have to consider that in

digital forensics the misclassification of even one file could be

crucial in a court of law and could lead to the issue of an

incorrect decision by the court members.

V. CONCLUSIONS

In this paper we examined a methodology for file type

identification, which uses computational intelligence

techniques for feature selection and classification. More

specifically, this methodology was applied to the three most

common image file types (jpg, png and gif) due to their

significance to digital forensics. In order to ascertain the

method’s accuracy, different machine learning classifiers were

utilized. A three stage process involving feature extraction

(Byte Frequency Distribution), feature selection (genetic

algorithm) and classification (decision tree, support vector

machine, neural network, logistic regression and k-nearest

neighbor) was examined. Experiments were conducted having

files altered in a digital forensics perspective –by changing

both their extension and signature- and the results were

presented. The examined methodology showed -in most cases-

very high and exceptional accuracy in file type identification,

even if someone intentionally changes file’s extension and

signature. It was found that the classifier with the best results

was the artificial neural network. In the future we plan to

deploy the model, in fragments of files and examine its

behavior. During our research we had strong evidence that the

proposed method would work well too, although slight

modifications and changes have to be made. Furthermore the

correct identification of more file types should be another

extension to our research and we plan to examine whether the

proposed model depends on file compression.

REFERENCES

[1] K. Karampidis, G. Papadourakis, and I. Deligiannis,

“File Type Identification -A Literature Review,” in 9th

International Conference on New Horizons in Industry

Business and Education, NHIBE 2015, 2015, p. 141.

[2] M. McDaniel, “Automatic File Type Detection

Algorithm,” James Madison University, 2001.

[3] M. McDaniel and M. H. Heydari, “Content based file

type detection algorithms,” 36th Annu. Hawaii Int.

Conf. Syst. Sci. 2003. Proc., 2003.

[4] W. J. Li, K. Wang, S. J. Stolfo, and B. Herzog,

“Fileprints: Identifying file types by n-gram analysis,”

Proc. from 6th Annu. IEEE Syst. Man Cybern. Inf.

Assur. Work. SMC 2005, vol. 2005, no. June, pp. 64–

71, 2005.

[5] J. Dunham, M. Sun, and J. Tseng, “Classifying file

type of stream ciphers in depth using neural

networks,” in The 3rd ACS/IEEE International

Conference on Computer Systems and Applications,

2005.

19 POLIBITS, vol. 56, 2017, pp. 15–20https://doi.org/10.17562/PB-56-2

Comparison of Classification Algorithms for File Type Detection A Digital Forensics Perspective

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

[6] M. C. Amirani, M. Toorani, and a. a B. Shirazi, “A

new approach to content-based file type detection,” in

IEEE Symposium on Computers and Communications,

2008, no. July 2008, pp. 1103–1108.

[7] D. Cao, J. Luo, M. Yin, and H. Yang, “Feature

selection based file type identification algorithm,” in

2010 IEEE International Conference on Intelligent

Computing and Intelligent Systems, 2010, vol. 3, pp.

58–62.

[8] I. Ahmed, K. Lhee, H. Shin, and M. Hong, “Content-

based File-type Identification Using Cosine Similarity

and a Divide-and-Conquer Approach,” IETE Tech.

Rev., vol. 27, no. 6, p. 465, Nov. 2010.

[9] I. Ahmed, K. Lhee, H. Shin, and M. Hong, “Fast

content-based file-type identification,” in 7th Annual

IFIP WG 11.9 International Conference on Digital

Forensics, 2011, pp. 65–75.

[10] M. C. Amirani, M. Toorani, and S. Mihandoost,

“Feature-based Type Identification of File

Fragments,” Secur. Commun. Networks, vol. 6, no. 1,

pp. 115–128, Jan. 2013.

[11] J. D. Evensen, S. Lindahl, and M. Goodwin, “File-

type Detection Using Naïve Bayes and n-gram

Analysis,” Norwegian Information Security

Conference, NISK, vol. 7, no. 1. Fredrikstad, 2014.

[12] K. Karampidis and G. Papadourakis, “File Type

Identification for Digital Forensics,” Springer

International Publishing, 2016, pp. 266–274.

[13] N. S. Alamri and W. H. Allen, “A comparative study

of file-type identification techniques,” in

SoutheastCon 2015, 2015, pp. 1–5.

[14] M. Hall, “Correlation-based feature selection for

machine learning,” The University of Waicato, 1999.

[15] L. Fei-Fei, R. Fergus, and P. Perona, “Learning

Generative Visual Models from Few Training

Examples: An Incremental Bayesian Approach Tested

on 101 Object Categories,” p. 178.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, and I. H. Witten, “The WEKA data

mining software,” ACM SIGKDD Explor. Newsl., vol.

11, no. 1, p. 10, Nov. 2009.

[17] S. L. Salzberg, “C4.5: Programs for Machine Learning

by J. Ross Quinlan. Morgan Kaufmann Publishers,

Inc., 1993,” Mach. Learn., vol. 16, no. 3, pp. 235–240,

Sep. 1994.

[18] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for

Support Vector Machines,” ACM Trans. Intell. Syst.

Technol., vol. 2, no. 3, pp. 27:1–27:27, 2011.

20POLIBITS, vol. 56, 2017, pp. 15–20 https://doi.org/10.17562/PB-56-2

Konstantinos Karampidis, Ergina Kavallieratou, Giorgos Papadourakis

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

